Skip to content

Specific Materials Examples

This document contains links to the tutorials that demonstrate how to reproduce material structures from published scientific manuscripts. Each entry lists the tutorial name and the corresponding manuscript reference.

1. Single-Material Structures

1.1. 2D Structures

1.1.1. SrTiO3 Slab

DOI: 10.1103/PhysRevB.77.195408 12

Strontium Titanate Slabs

1.2. 0D Structures

1.2.1. Gold Nanoclusters

DOI: 10.1103/PhysRevB.84.245429. 3

Gold Nanoparticles

2. Multi-Material Structures

2.1. Interfaces

2.1.1. Interface between Graphene and h-BN

DOI: 10.1038/ncomms7308 4

Graphene on Hexagonal Boron Nitride

2.1.2. Interface between Graphene and SiO2 (alpha-quartz)

DOI: 10.1103/PhysRevB.78.115404

Graphene on Silicon Dioxide

2.1.3. Interface between Copper and SiO2 (Cristobalite)

DOI: 10.1103/PhysRevB.83.115327 5.

Copper on Cristobalite

2.1.4. High-k Metal Gate Stack (Si/SiO2/HfO2/TiN)

QuantumATK tutorial: High-k Metal Gate Stack Builder 67 High-k Metal Gate Stack

2.2. Twisted Interfaces

2.2.1. Twisted Bilayer h-BN nanoribbons

DOI: 10.1021/acs.nanolett.9b00986 8

Twisted Bilayer Boron Nitride

2.2.2. Twisted Bilayer MoS2 commensurate lattices

DOI: 10.1038/ncomms5966 910

Twisted Bilayer Molybdenum Disulfide

3. Defects

3.1. Point Defects

3.1.1. Substitutional Point Defects in Graphene

DOI: 10.1103/PhysRevB.84.245446

Point Defect, Substitution, 0

3.1.2. Vacancy-Substitution Pair Defects in GaN

DOI: 10.1103/PhysRevB.93.165207. 11

Point Pair Defects: Mg Substitution and Vacancy in GaN

3.1.3. Vacancy Point Defect in h-BN

DOI: 10.1038/s41524-022-00730-w

Vacancy in h-BN

3.1.4. Interstitial Point Defect in SnO

DOI: 10.1103/PhysRevB.74.195128. 121314

SnO O-interstitial

3.2. Surface Defects

3.2.1. Island Surface Defect Formation in TiN

DOI: 10.1103/PhysRevB.97.035406. 15

Surface Defect

3.2.2. Step Surface Defect on Pt(111)

DOI: 10.1016/s0039-6028(02)01908-8. 16

Step Surface Defect on Pt

3.2.3. Adatom Surface Defects on Graphene

DOI: 10.1103/PhysRevB.77.235430

Adatom on Graphene Surface

3.3. Planar Defects

3.3.1. Grain Boundary in FCC Metals (Copper)

DOI: 10.1038/ncomms2919. 17

Copper Grain Boundary

3.3.2. Grain Boundary (2D) in h-BN

DOI: 10.1021/acs.nanolett.5b01852

h-BN Grain Boundary

4. Passivation

4.1. Edge Passivation

4.1.1. H-Passivated Silicon Nanowire

DOI: 10.1103/PhysRevB.76.035305 18

Passivated Silicon nanowire

4.2. Surface Passivation

4.2.1. H-Passivated Silicon (100) Surface

DOI: 10.1103/PhysRevB.57.13295. 192021

Si(100) H-Passivated Surface

5. Perturbations

5.1. Ripples

5.1.1. Ripple perturbation of a Graphene sheet

DOI: 10.1209/0295-5075/85/46002. 222324

Rippled Graphene

6. Other

6.1. Interface Optimization

6.1.1. Gr/Ni(111) Interface Optimization

DOI: 10.1039/c3nr05279f. 252627

Gr/Ni Interface

6.1.2. Pt Adatoms Island on MoS2

DOI: 10.1021/cg5013395. 2829303132

Pt Island on MoS2

References


  1. R. I. Eglitis and David Vanderbilt. First-principles calculations of atomic and electronic structure of srtio3 (001) and (011) surfaces. Phys. Rev. B, 77:195408, May 2008. URL: https://link.aps.org/doi/10.1103/PhysRevB.77.195408

  2. Atashi B. Mukhopadhyay, Javier F. Sanz, and Charles B. Musgrave. First-principles calculations of structural and electronic properties of monoclinic hafnia surfaces. Phys. Rev. B, 73:115330, Mar 2006. URL: https://link.aps.org/doi/10.1103/PhysRevB.73.115330

  3. Ask Hjorth Larsen, Jesper Kleis, Kristian Sommer Thygesen, Jens K. Nørskov, and Karsten Wedel Jacobsen. Electronic shell structure and chemisorption on gold nanoparticles. Phys. Rev. B, 84(24):245429, 2011. URL: https://doi.org/10.1103/PhysRevB.84.245429

  4. Allan H. MacDonald & Shaffique Adam Jeil Jung, Ashley M. DaSilva. Origin of the band gap in graphene on hexagonal boron nitride. Nature Communications, 6:6308, 2015. URL: https://doi.org/10.1038/ncomms7308

  5. T.-R. Shan, B. D. Devine, S. R. Phillpot, and S. B. Sinnott. Molecular dynamics study of the adhesion of cu/sio2interfaces using a variable-charge interatomic potential. Physical Review B, 2011. URL: https://doi.org/10.1103/PhysRevB.83.115327

  6. D A Muller, N Nakagawa, A Ohtomo, J L Grazul, and H Y Hwang. The electronic structure at the atomic scale of ultrathin gate oxides. Nature, 399:758–761, 1999. URL: https://doi.org/10.1038/21667

  7. J Robertson. High dielectric constant gate oxides for metal oxide si transistors. Reports on Progress in Physics, 69:327, 2006. URL: https://doi.org/10.1088/0034-4885/69/2/R02

  8. Lede Xian, Dante M. Kennes, Nicolas Tancogne-Dejean, Massimo Altarelli, and Angel Rubio. Multiflat bands and strong correlations in twisted bilayer boron nitride: doping-induced correlated insulator and superconductor. Phys. Rev. Lett., 125:086402, 2020. URL: https://doi.org/10.1021/acs.nanolett.9b00986

  9. Kaihui Liu, Liming Zhang, Ting Cao, Chenhao Jin, Diana Qiu, Qin Zhou, Alex Zettl, Peidong Yang, Steve G. Louie, and Feng Wang. Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. Nature Communications, 5:4966, 2014. URL: https://doi.org/10.1038/ncomms5966, doi:10.1038/ncomms5966

  10. Y. Cao, V. Fatemi, S. Fang, and et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature, 556:43–50, 2018. URL: https://doi.org/10.1038/nature26160

  11. Giacomo Miceli and Alfredo Pasquarello. Self-compensation due to point defects in mg-doped gan. Physical Review B, 93:165207, 2016. URL: https://link.aps.org/doi/10.1103/PhysRevB.93.165207

  12. A. Togo, F. Oba, and I. Tanaka. First-principles calculations of native defects in tin monoxide. Physical Review B, 74(19):195128, 2006. URL: https://doi.org/10.1103/PhysRevB.74.195128

  13. H. Wang, A. Chroneos, C. A. Londos, E. N. Sgourou, and U. Schwingenschlögl. Carbon related defects in irradiated silicon revisited. Scientific Reports, 4:4909, 2014. URL: https://doi.org/10.1038/srep04909

  14. Sutassana Na-Phattalung, M. F. Smith, Kwiseon Kim, Mao-Hua Du, Su-Huai Wei, S. B. Zhang, and Sukit Limpijumnong. First-principles study of native defects in anatase tio2. Physical Review B, 73:125205, 2006. URL: https://doi.org/10.1103/PhysRevB.73.125205

  15. D. G. Sangiovanni, A. B. Mei, D. Edström, L. Hultman, V. Chirita, I. Petrov, and J. E. Greene. Effects of surface vibrations on interlayer mass transport: ab initio molecular dynamics investigation of ti adatom descent pathways and rates from tin/tin(001) islands. Physical Review B, 97:035406, 2018. URL: https://link.aps.org/doi/10.1103/PhysRevB.97.035406

  16. Z. Šljivančanin and B. Hammer. Oxygen dissociation at close-packed Pt terraces, Pt steps, and Ag-covered Pt steps studied with density functional theory. Surface Science, 515(1):235–244, 2002. URL: https://doi.org/10.1016/s0039-6028(02)01908-8

  17. Timofey Frolov, David L Olmsted, Mark Asta, and Yuri Mishin. Structural phase transformations in metallic grain boundaries. Nature Communications, 4:1899, 2013. URL: https://doi.org/10.1038/ncomms2924

  18. B. Aradi, L. E. Ramos, P. Deák, Th. Köhler, F. Bechstedt, R. Q. Zhang, and Th. Frauenheim. Theoretical study of the chemical gap tuning in silicon nanowires. Phys. Rev. B, 76(3):035305, 2007. URL: https://doi.org/10.1103/PhysRevB.76.035305

  19. U. Hansen and P. Vogl. Hydrogen passivation of silicon surfaces: a classical molecular-dynamics study. Physical Review B, 57(20):13295–13304, 1998. URL: https://doi.org/10.1103/physrevb.57.13295

  20. J. E. Northrup. Structure of si(100)h: dependence on the h chemical potential. Physical Review B, 44(3):1419–1422, 1991. URL: https://doi.org/10.1103/physrevb.44.1419

  21. J. J. Boland. Structure of the h‐saturated si(100) surface. Physical Review Letters, 65(26):3325–3328, 1990. URL: https://doi.org/10.1103/physrevlett.65.3325

  22. R. C. Thompson-Flagg, M. J. B. Moura, and M. Marder. Rippling of graphene. EPL (Europhysics Letters), 85(4):46002, 2009. URL: https://doi.org/10.1209/0295-5075/85/46002

  23. A. Fasolino, J. H. Los, and M. I. Katsnelson. Intrinsic ripples in graphene. Nature Materials, 6:858–861, 2007. URL: https://doi.org/10.1038/nmat2011

  24. L. A. Openov and A. I. Podlivaev. Interaction of the stone-wales defects in graphene. Physics of the Solid State, 52(1):2010, 2010. URL: https://doi.org/10.1134/S1063783415070240

  25. Arjun Dahal and Matthias Batzill. Graphene–nickel interfaces: a review. Nanoscale, 6:2548–2562, 2014. URL: https://doi.org/10.1039/C3NR05279F

  26. Y. Gamo, A. Nagashima, M. Wakabayashi, M. Terai, and C. Oshima. Atomic structure of monolayer graphite formed on ni(111). Surface Science, 374(1-3):61–64, 1997. URL: https://www.sciencedirect.com/science/article/abs/pii/S0039602896007856

  27. G. Bertoni, L. Calmels, A. Altibelli, and V. Serin. First-principles calculation of the electronic structure and eels spectra at the graphene/ni(111) interface. Physical Review B, 2004. URL: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.71.075402

  28. W. A. Saidi. Density functional theory study of nucleation and growth of pt nanoparticles on mos2(001) surface. Crystal Growth & Design, 15(2):642–652, 2015. URL: https://doi.org/10.1021/cg5013395

  29. M. Jiao, W. Song, H.-J. Qian, Y. Wang, Z. Wu, S. Irle, and K. Morokuma. Qm/md studies on graphene growth from small islands on the ni(111) surface. Nanoscale, 8(5):3067–3074, 2016. URL: https://doi.org/10.1039/c5nr07680c

  30. Kristen A. Fichthorn and Matthias Scheffler. Island nucleation in thin-film epitaxy: a first-principles investigation. Phys. Rev. Lett., 84:5371, 2000. URL: https://link.aps.org/doi/10.1103/PhysRevLett.84.5371

  31. Jörg Neugebauer and Matthias Scheffler. Mechanisms of island formation of alkali-metal adsorbates on al(111). Phys. Rev. Lett., 71:577, 1993. URL: https://link.aps.org/doi/10.1103/PhysRevLett.71.577

  32. Mahbube Hortamani, Peter Kratzer, and Matthias Scheffler. Density-functional study of mn monosilicide on the si(111) surface: film formation versus island nucleation. Phys. Rev. B, 76:235426, 2007. URL: https://link.aps.org/doi/10.1103/PhysRevB.76.235426